Markov Models and Renaissance Music

Re-examining Four-Voice Motets by Josquin

Relationships

- Characters in literature share relationships with one another.
- How are characters connected?
- How do the character connections contribute to a narrative?
- How can those relationships be visualized?
- Pitches, intervals, sounding simultaneities, rhythms share relationships in music:
- How are pitches related to each other?
- How are pitches related to intervals?
- How are pitches related to harmonies?

Relationships

- How are pitches related to rhythms?
- How are any of the musical attributes related to each other?
- How do these relationships contribute to the development of a composition?
- How do these relationships contribute to the idea of styles and genres?

Networks

- Relationships in prose, video games, and music can be represented in networks.
- Networks can be represented in tables.
- Tables can contain network representations in matrices.
- Tabular data can be graphically represented in network graphs.
- The idea of graphically representing network data stems back to Donald Knuth
- (Author of the seven volume set The Art of Programming)

Markov Model

- Introduced by Russian mathematician Andrey Andreyevich Markov
- A simple chain:
- Studied sequence of 20,000 letters in A.S. Pushkin’s novel verse ‘Eugene Onegin’
- Stationary vowel probability: $p=0.432$ (Oth order)
- p that a vowel is followed by another vowel: $p 1=0.128$
- p that a consonant is followed by a vowel: $p 2=0.633$
- Thus in a Markov chain:
- p of future state is X_{t+1} (X random variable, $t+1$ is time)
- depends on the current state X_{t}

State Transitions

- One of the main ideas behind Markov models is how to randomly move from one state to another.
- The task is statistically achieved by creating state transition matrices (STMs).
- A STM keeps a tally of how many times a state is changed from one discrete point (A) to another (B).
- At the end of the task a percentage, or p (probability), is assigned to the number of times a transition occurred from $A \Rightarrow B, A \Rightarrow A, B \Rightarrow A, B \Rightarrow B$.
- The combined transitions can be described as a bigram, or 2-gram, which in turn can be expressed in a STM:

State Transition Network

- A State Transition Network can be visualized in the following way:

State Transition Networks with Musical Parameters

- In polyphonic music there are 2-gram STMs of:

1. melodic successions
2. vertical successions
3. rhythmic successions

- STMs can be generated for 3-grams, 4-grams, 5-grams, and any other number of n-grams.
- A melodic succession 2-gram can be generated by the movements of:

State Transition Networks with Musical Parameters

- Higher order n-grams would include a series of notes (or a melodic strand) to move to another melodic strand:

- A vertical succession bigram would include:

State Transition Networks with Musical Parameters

- Rhythmic melodic n-grams can be expressed:

- Melodic and vertical n-grams can be combined (VIS-Framework).
- All permutations of melodic, vertical, and rhythmic successions can result in STMs that can be used to identify statistical attributes of a musical style.
- A look at a STM:

State Transition Matrix of "Josquin's" De profundis Motet

From \longrightarrow To														
PCs	C (0)	C\# (1)	D (2)	Eb (3)	E (4)	$F(5)$	F\# (6)	G (7)	G\# (8)	A (9)	Bb (10)	B (11)	End	Rest
C (0)	0.2447	0	0.2411	0	0.0213	0.0426		0.0142	0	0.0603	0	0.2766	0	0.0993
C\# (1)	0	0	1	0	0	0		0	0	0	0	0	0	0
D (2)	0.3676	0.0147	0.0637	0	0.2745	0.0441	0	0.0931	0	0.0245	0	0.0490	0.0049	0.0637
Eb (3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E (4)	0.0417	0	0.3594	0	0.1094	0.3229	0.0052	0.0156	0	0.0469	0	0	0	0.0990
F (5)	0.0291	0	0.0523	0	0.4302	0.0698		0.3779	0	0.0233	0	0	0	0.0174
F\# (6)	0	0	0	0	0.1667	0	0.1667	0.5833	0.0833	0	0	0	0	0
$\mathrm{G}(7)$	0.0897	0	0.0276	0	0.0897	0.2241	0.0276	0.1828	0	0.2690	0	0.0034	0.0069	0.0793
G\# (8)	0	0	0	0	0	0	0.3333	0	0.3333	0.3333	0	0	0	0
A (9)	0.0383	0	0.0601	0	0.0055	0.0656		0.4973	0.0055	0.0601	0.0109	0.2350	0	0.0219
$\mathrm{Bb}(10)$	0	0	0	0	0	0		0	0	1	0	0	0	0
B (11)	0.4452	0	0.0342	0	0	0		0.0822	0	0.3288	0	0.0685	0.0068	0.0342
Start	0	0	0.2500	0	0	0		0	0	0	0	0	0	0.7500
Rest	0.0993	0	0.0625	0	0.0221	0		0.1324	0	0.0294	0	0.0147	0	0.6397
From														\rightarrow To

reiner.kramer@mcgill.ca

Social Sciences and Humanities
Research Council of Canada

Conseil de recherches en sciences humaines du Canada

Canadà̀

MCG11 Schulich School of Music

C	R	Centre for Interdisciplinary Research
M	T	in Music Media and Technology

