Markov Models and Renaissance Music

Re-examining Four-Voice Motets by Josquin
Relationships

• Characters in literature share relationships with one another.
 • How are characters connected?
 • How do the character connections contribute to a narrative?
 • How can those relationships be visualized?

• Pitches, intervals, sounding simultaneities, rhythms share relationships in music:
 • How are pitches related to each other?
 • How are pitches related to intervals?
 • How are pitches related to harmonies?
Relationships

• How are pitches related to rhythms?

• How are any of the musical attributes related to each other?

• How do these relationships contribute to the development of a composition?

• How do these relationships contribute to the idea of styles and genres?
Networks

• Relationships in prose, video games, and music can be represented in networks.

• Networks can be represented in tables.

• Tables can contain network representations in matrices.

• Tabular data can be graphically represented in network graphs.

• The idea of graphically representing network data stems back to Donald Knuth
 • (Author of the seven volume set *The Art of Programming*)
Markov Model

• Introduced by Russian mathematician Andrey Andreyevich Markov

 • A simple chain:
 • Studied sequence of 20,000 letters in A.S. Pushkin’s novel verse ‘Eugene Onegin’
 • Stationary vowel probability: $p = 0.432$ (0th order)
 • p that a vowel is followed by another vowel: $p_1 = 0.128$
 • p that a consonant is followed by a vowel: $p_2 = 0.633$

 • Thus in a Markov chain:
 • p of future state is X_{t+1} (X random variable, $t + 1$ is time)
 • depends on the current state X_t
State Transitions

• One of the main ideas behind Markov models is how to randomly move from one state to another.

• The task is statistically achieved by creating state transition matrices (STMs).

• A STM keeps a tally of how many times a state is changed from one discrete point (A) to another (B).

• At the end of the task a percentage, or p (probability), is assigned to the number of times a transition occurred from $A \Rightarrow B$, $A \Rightarrow A$, $B \Rightarrow A$, $B \Rightarrow B$.

• The combined transitions can be described as a bigram, or 2-gram, which in turn can be expressed in a STM:
State Transition Network

- A State Transition Network can be visualized in the following way:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>0.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>
State Transition Networks with Musical Parameters

- In polyphonic music there are 2-gram STMs of:
 1. melodic successions
 2. vertical successions
 3. rhythmic successions

- STMs can be generated for 3-grams, 4-grams, 5-grams, and any other number of n-grams.

- A melodic succession 2-gram can be generated by the movements of:
State Transition Networks with Musical Parameters

- Higher order n-grams would include a series of notes (or a melodic strand) to move to another melodic strand:

- A vertical succession bigram would include:
State Transition Networks with Musical Parameters

- Rhythmic melodic n-grams can be expressed:

- Melodic and vertical n-grams can be combined (VIS-Framework).

- All permutations of melodic, vertical, and rhythmic successions can result in STMs that can be used to identify statistical attributes of a musical style.

- A look at a STM:
State Transition Matrix of “Josquin’s” *De profundis* Motet

<table>
<thead>
<tr>
<th>From</th>
<th>C(0)</th>
<th>C#(1)</th>
<th>D(2)</th>
<th>Eb(3)</th>
<th>E(4)</th>
<th>F(5)</th>
<th>F#(6)</th>
<th>G(7)</th>
<th>G#(8)</th>
<th>A(9)</th>
<th>Bb(10)</th>
<th>B(11)</th>
<th>End</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(0)</td>
<td></td>
<td>0.2447</td>
<td></td>
<td>0.2411</td>
<td></td>
<td>0.0213</td>
<td>0.0426</td>
<td>0.0142</td>
<td>0.0603</td>
<td>0.2766</td>
<td>0.0993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C#(1)</td>
<td>0.2447</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0426</td>
<td>0.0142</td>
<td>0.0603</td>
<td>0.2766</td>
<td>0.0993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(2)</td>
<td>0.3676</td>
<td>0.0147</td>
<td>0.0637</td>
<td>0.2745</td>
<td>0.0441</td>
<td>0.0931</td>
<td>0.0245</td>
<td>0.0490</td>
<td>0.0049</td>
<td>0.0637</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3779</td>
<td>0.0233</td>
<td>0.0174</td>
<td>0.0174</td>
<td>0.0174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E(4)</td>
<td>0.0417</td>
<td>0.3594</td>
<td>0.1094</td>
<td>0.3229</td>
<td>0.0052</td>
<td>0.0156</td>
<td>0.0469</td>
<td>0.0090</td>
<td>0.0174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(5)</td>
<td>0.0291</td>
<td>0.0523</td>
<td>0.4302</td>
<td>0.0698</td>
<td>0.3779</td>
<td>0.0233</td>
<td>0.0174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F#(6)</td>
<td></td>
<td></td>
<td></td>
<td>1.0000</td>
<td>0.5833</td>
<td>0.0833</td>
<td>0.0090</td>
<td>0.0174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G(7)</td>
<td>0.0897</td>
<td>0.0276</td>
<td>0.0897</td>
<td>0.2241</td>
<td>0.0276</td>
<td>0.1828</td>
<td>0.2690</td>
<td>0.0034</td>
<td>0.0069</td>
<td>0.0793</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G#(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0000</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0.3333</td>
<td>0.3333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(9)</td>
<td>0.0383</td>
<td>0.0601</td>
<td>0.0055</td>
<td>0.0656</td>
<td>0.4973</td>
<td>0.0055</td>
<td>0.0601</td>
<td>0.0109</td>
<td>0.2350</td>
<td>0.0219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bb(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4973</td>
<td>0.0055</td>
<td>0.0601</td>
<td>0.0109</td>
<td>0.2350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B(11)</td>
<td>0.4452</td>
<td>0.0342</td>
<td>0.0822</td>
<td>0.3288</td>
<td>0.0685</td>
<td>0.0068</td>
<td>0.0342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0822</td>
<td>0.3288</td>
<td>0.0685</td>
<td>0.0068</td>
<td>0.0342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>0.0993</td>
<td>0.0625</td>
<td>0.0221</td>
<td>0.1324</td>
<td>0.0294</td>
<td>0.0147</td>
<td>0.6397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>