Non-chord Tone Identification

Yaolong Ju

Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT) Schulich School of Music McGill University

SIMSSA XII Workshop 2017

Aug. 7th, 2017

Non-chord tones are:

Elaborative notes, usually marked by particular step-wise melodic

contours, which don't belong to the local structural harmony

Non-chord tone identification can be used in:

- ➢ Melodic analysis (Illescas et al. 2011)
- Polyphonic music retrieval (Pickens et al. 2004)
- ≻ Harmonization (Chuan and Chew 2011)
- ➤ Harmonic analysis (Pardo and Birmingham 2002; Sapp 2007;

Mearns 2013; Willingham 2013)

Harmonic analysis:

- > Identifying local harmony in complex music textures
- ➤ Can be greatly simplified by identifying and eliminating all nonchord tones before determining a chord label

Few scholars have proposed complete, dedicated non-chord tone identification models

Determining chord labels

We propose a non-chord tone identification model:

Using machine learning (feedforward neural networks, FFNN), which learns to conduct non-chord tone identification automatically from the provided training examples
 Rameau (Kröger et al. 2008), a dataset consisting of 140 Bach

chorales with non-chord tone labels, is used

Fig. 1: Illustration of the structure, the input and output of FFNN, which is generated from Bach chorales.

F1-measure: 71.55 \pm 0.35% (Averaged performances for 10 shuffles)

F1-measure: 71.55%

Fig. 2: Illustration the first 9 measures of BWV 389 "Nun lob, mein Seel, den Herren". The second line is the non-chord tone ground truth, and the third line is the predicted non-chord tones.

F1-measure: 71.55%

Fig. 2: Illustration the first 9 measures of BWV 389 "Nun lob, mein Seel, den Herren". The second line is the non-chord tone ground truth, and the third line is the predicted non-chord tones.

F1-measure: 71.55%

Fig. 2: Illustration the first 9 measures of BWV 389 "Nun lob, mein Seel, den Herren". The second line is the non-chord tone ground truth, and the third line is the predicted non-chord tones.

- F1-measure: 71.55%
- An innovative and promising approach to tackling the problem of non-chord tone identification, as well as harmonic analysis.
- If more data is available, better performances can be achieved
- Complete the whole Bach chorale dataset, with 371 chorales fully annotated with non-chord tone labels
 Enables the model to achieve better performances
 The dataset can be used in other music analytical tasks

Andrew Hughes' Chants

Andrew Hughes encoded about 6000 medieval chants into a special format, which are converted into music scores with MEI (<u>Music Encoding Initiative</u>) format (rendered by Verovio)

|g19 =VE.1d

/ gloria sanctoruM rex unica christe tuoruM nos in laude tuI fac convotos adalardI ut per eum cuius sollemnia concelebramuS te laudando deuM mereamur in ethere regnuM /()

\ gloria.13.21.2 sanctoruM.10,.121.1; \$ rex.32 unica.34.43.45 christe.5423.21 tuoruM.21.01.1; nos.2 in.45 laude.56.54 tuI.4513.3; fac.3=2 convotos.12.10.0 adalardI.01.32'12.21.12; ut.21, \$ per.4 eum.45.543'452 cuius.343=2.1 \$ sollemnia.12.2.10.0 concelebramuS.10,.2.343.1.1; \$^ te.57=6 laudando.45=45434.45.5 deuM.57'865'745.5; mereamur.57.654.5675.5 in.54 ethere.5654.5.43'21 regnuM.03=245'1032=.1; ! \()

Non-chord Tone Identification

Social Sciences and Humanities Research Council of Canada

Conseil de recherches en sciences humaines du Canada

Canada

Schulich School of Music École de musique Schulich

DDMAL DISTRIBUTED DIGITAL MUSIC ARCHIVES & LIBRARIES LAB

🐯 McGill

R Centre for Interdisciplinary Research in Music Media and Technology Fonds de recherche Société et culture Québec 🏘 🕸

Pardo, Bryan, and William P. Birmingham. 2002. "Algorithms for Chordal Analysis." *Computer Music Journal* 26 (2): 27–49.

Illescas, Plácido R., David Rizo Valero, Iñesta Quereda, José Manuel, and Rafael Ramírez. 2011. "Learning Melodic Analysis Rules" In *Proceedings of the International Workshop on Music and Machine Learning.*

Pickens, Jeremy. 2004. "Harmonic Modeling for Polyphonic Music Retrieval." Ph.D. Dissertation, *University of Massachusetts at Amherst*.

Chuan, Ching-Hua, and Elaine Chew. 2011. "Generating and Evaluating Musical Harmonizations That Emulate Style." *Computer Music Journal* 35 (4): 64–82.

Sapp, Craig Stuart. 2007. "Computational Chord-Root Identification in Symbolic Musical Data: Rationale, Methods, and Applications." *Computing in Musicology* 15: 99–119.

Willingham, Timothy Judson. 2013. "The Harmonic Implications of the Non-Harmonic Tones in the Four-Part Chorales of Johann Sebastian Bach". Ph.D. Dissertation, *Liberty University*.

Mearns, Lesley. 2013. "The Computational Analysis of Harmony in Western Art Music." Ph.D. Dissertation, *Queen Mary University of London*.