

Dataset Creation and Automatic Harmonic Analysis of Joseph Haydn's Op.20

Néstor Nápoles López

CIRMMT Workshop on Digital Musicology April 27th, 2018 McGill University

Introduction

- Work in the context of the CompMusic Project, at Universitat Pompeu Fabra
 - <u>http://compmusic.upf.edu/</u>
- Coordinated by Dr. Xavier Serra
- Supervision of harmonic analysis by Rafael Caro Repetto

Harmonic Analysis

Harmony

The simultaneous sounding of notes

Figure 1: Excerpt from Joseph Haydn's Op.20 No.3 - II. Menuetto: Allegretto, mm. 1-6

Source: Nápoles (2017)

Harmonic Analysis

Harmonic Analysis

The interpretation of harmonic structures in music, their resolution into relatively simpler constituent elements (e.g., chord labels), and the investigation of the relevant functions between those elements Menuetto: Allegretto

Harmonic structures

Harmonic Analysis

Which simpler elements?

- Chord labels
- Figured bass
- Roman numerals (functional harmonic analysis)

Harmonic Analysis

Which simpler elements?

- Chord labels
- Figured bass
- Roman numerals (functional harmonic analysis)

About the six string quartets, Op.20

Joseph Haydn wrote 68 string quartets in total

Chronologically, Op.20 corresponds to numbers 23-28

They were composed when Haydn was 40 years old

As a reference, Beethoven and Mozart composed 16 and 23 string quartets, respectively

Number	Movement	Tempo		
Op.20 No	o.1			
1	I	Allegro Moderato		
2	II	Minuetto. Allegretto		
3	III	Affettuoso e sostenuto		
4	IV	Finale. Presto		
Op.20 No	0.2			
5	I	Moderato		
6	II	Adagio		
7	III	Minuetto. Allegretto		
8	IV	Fuga a 4 Soggetti		
Op.20 No	0.3			
9	I	Allegro con Spirito		
10	II	Minuetto. Allegretto		
11	III	Poco Adagio		
12	IV	Finale. Allegro Molto		
Op.20 No	5.4			
13	I	Allegro di Molto		
14	II	Un poco Adagio Affettuoso		
15	III	Allegretto alla zingarese		
16	IV	Presto scherzando		
Op.20 No	5.5			
17	I	Allegro moderato		
18	II	Minuetto		
19	III	Adagio		
20	IV	Finale: Fuga a due Soggetti		
Op.20 No	0.6			
21	I	Allegro di Molto e Scherzando		
22	II	Adagio, Cantabile		
23	III	Minuetto. Allegretto		
24	IV	Fuga a 3 Soggetti. Allegro		

Number	Movement	Tempo		
Op.20 No	0.1			
1	I	Allegro Moderato		
2	II	Minuetto. Allegretto		
3	III	Affettuoso e sostenuto		
4	IV	Finale. Presto		
Op.20 No	0.2			
5	I	Moderato		
6	II	Adagio		
7	III	Minuetto. Allegretto		
8	IV	Fuga a 4 Soggetti		
Op.20 No	o.3			
9	I	Allegro con Spirito		
10	II	Minuetto. Allegretto		
11	III	Poco Adagio		
12	IV	Finale. Allegro Molto		
Op.20 No	5.4	•		
13	I	Allegro di Molto		
14	II	Un poco Adagio Affettuoso		
15	III	Allegretto alla zingarese		
16	IV	Presto scherzando		
Op.20 No	5.5			
17	I	Allegro moderato		
18	II	Minuetto		
19	III	Adagio		
20	IV	Finale: Fuga a due Soggetti		
Op.20 No	0.6			
21	I	Allegro di Molto e Scherzando		
22	II	Adagio, Cantabile		
23	III	Minuetto. Allegretto		
24	IV	Fuga a 3 Soggetti. Allegro		

- Find/Encode the 24 scores into a symbolic music representation
- Annotate the harmonic analysis of all of them using a consistent and "parsable" nomenclature
- Present the output of a known automatic harmonic analysis algorithm using the same nomenclature as the manual annotations
- Compare the automatic annotations to our dataset of manual annotations

• Find/Encode the 24 scores into a symbolic music representation

KernScores

http://kern.ccarh.org/

A library of virtual musical scores in the Humdrum **kern data format

Already contains 19 out of 24 scores from Op.20 in Humdrum (**kern) format

Missing movement
Op.20 No.1 - III. Affettuoso e sostenuto
Op.20 No.2 - II. Adagio
Op.20 No.3 - I. Allegro con Spirito
Op.20 No.4 - I. Allegro di Molto
Op.20 No.4 - II. Un poco Adagio Affettuoso

**kern	**kern	**kern	**kern
*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]
*g:	*g:	*g:	*g:
*clefF4	*clefC3	*clefG2	*clefG2
*M3/4	*M3/4	*M3/4	*M3/4
2r	2r	2r	2r
4r	4r	4r	4d
=1	=1	=1	=1
4G	2.r	4B-	4b-
4A		4c	4a
4B-		4d	4g
=2	=2	=2	=2
2c	2r	2e-	4g
24 C			4g
4B-	4d	4d	4g
=3	=3	=3	=3
[2.A	[2.c	[2.f#	4cc
			4cc
		•	4dd
=4	=4	=4	=4
2.A_	2.c_	2.f#_	2ee-
		•	4ee-
$=\!5$	=5	=5	$=\!5$
4A]	4c]	4f#]	4dd
2r	2r	2r	4r
1.0			4d

Humdrum

A syntax that is not necessarily related to music

One popular representation that complies with the Humdrum syntax is the ****kern** syntax, and it is used to store relevant information of a **musical score**

- Find/Encode the 24 scores into a symbolic music representation
 - Encode the 5 remaining scores in Humdrum (**kern) format

Manual encoding in Humdrum for the following movements:

Op.	20 No.1	- III. Affettuoso e sostenuto
Op.	20 No.2	- II. Adagio
Op.	20 No.3	- I. Allegro con Spirito
Op.	20 No.4	- I. Allegro di Molto
2		

Op.20 No.4 - II. Un poco Adagio Affettuoso

The 5 movements encoded total an amount of **868 measures** of music

Using as a reference the version edited by Wilhelm Altmann, which can be found in the Petrucci Music Library (http://imslp.org)

Joseph Haydn, *Quartets for Strings, Haydn, Ed. W. Altmann: Op. 20/33 (m.sc)* (Place of Publication Not Identified: Dover Publications, 1985).

- Find/Encode the 24 scores into a symbolic music representation
- Annotate the harmonic analysis of all of them using a consistent and "parsable" nomenclature

**harm

Another representation that complies with the Humdrum syntax, and allows to encode relevant information about **functional harmony**

**harm	**kern	**kern	**kern	**kern
*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]
*g:	*g:	*g:	*g:	*g:
*	*clefF4	*clefC3	*clefG2	*clefG2
*M3/4	*M3/4	*M3/4	*M3/4	*M3/4
	2r	2r	2r	2r
	4r	4r	4r	4d
=1	=1	=1	=1	=1
i	4G	2.r	4B-	4b-
iio	4A		4c	4a
ib	4B-		4d	4g
=2	=2	=2	=2	=2
iv	2c	2r	2e-	4g
22				4g
ib	4B-	4d	4d	4g
=3	=3	=3	=3	=3
viiob	[2.A	[2.c	[2.f#	4cc
				4cc
V7c				4dd
=4	=4	=4	=4	=4
viioD7b	2.A_	2.c_	2.f#_	2ee-
				4ee-
$=\!5$	=5	=5	=5	=5
V7c	4A]	4c]	4f#]	4dd
	2r	2r	2r	4r
22				4d

**harm	**kern	**kern	**kern	**kern
*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]
*g:	*g:	*g:	*g:	*g:
*	*clefF4	*clefC3	*clefG2	*clefG2
*M3/4	*M3/4	*M3/4	*M3/4	*M3/4
	2r	2r	2r	2r
	4r	4r	4r	4d
=1	=1	=1	=1	=1
i	4G	2.r	4B-	4b-
iio	4A		4c	4a
ib	4B-		4d	4g
=2	=2	=2	=2	=2
iv	2c	2r	2e-	4g
22				4g
ib	4B-	4d	4d	4g
=3	=3	=3	=3	=3
viiob	[2.A	[2.c	[2.f#	4cc
				4cc
V7c				4dd
=4	=4	=4	=4	=4
viioD7b	2.A_	2.c_	2.f#_	2ee-
				4ee-
=5	$=\!5$	=5	=5	=5
V7c	4A]	4c]	4f#]	4dd
	2r	2r	2r	4r
12				4d

Annotating the harmony of Op.20

- Analyzing on paper
 - Néstor Nápoles López, Master student
 - Rafael Caro Repetto, PhD student
- Encoding using **harm syntax
- **4961** roman numeral labels

- Find/Encode the 24 scores into a symbolic music representation
- Annotate the harmonic analysis of all of them using a consistent and "parsable" nomenclature
- Present the output of a known automatic harmonic analysis algorithm using the same nomenclature as the manual annotations

**kern	**kern	**kern	**kern				**harm	**kern	**kern	**kern	**kern
*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]	1			*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]	*k[b-e-]
*g:	*g:	*g:	*g:	1			*g:	*g:	*g:	*g:	*g:
*clefF4	*clefC3	*clefG2	*clefG2	1			*	*clefF4	*clefC3	*clefG2	*clefG2
*M3/4	*M3/4	*M3/4	*M3/4	1			*M3/4	*M3/4	*M3/4	*M3/4	*M3/4
2r	2r	2r	2r					2r	2r	2r	2r
4r	4r	4r	4d	1				4r	4r	4r	4d
=1	=1	=1	=1	1			=1	=1	=1	=1	=1
4G	2.r	4B-	4b-]			i	4G	2.r	4B-	4b-
4A		4c	4a		Automatic		iio	4A		4c	4a
4B-		4d	4g		nucomucie	· N	ib	4B-		4d	4g
=2	=2	=2	=2		Harmonic		=2	=2	=2	=2	=2
2c	2r	2e-	4g]	1	\neg	iv	2c	2r	2e-	4g
	3		4g]	Analysis		12				4g
4B-	4d	4d	4g]	2		ib	4B-	4d	4d	4g
=3	=3	=3	=3]			=3	=3	=3	=3	=3
[2.A	[2.c	[2.f#	4cc				viiob	[2.A	[2.c	[2.f#	4cc
		•	4cc								4cc
•		•	4dd				V7c	•		•	4dd
=4	=4	=4	=4				=4	=4	=4	=4	=4
2.A_	2.c_	2.f#_	2ee-]			viioD7b	2.A_	2.c_	2.f#_	2ee-
•		10	4ee-							20	4ee-
=5	$=\!5$	$=\!5$	=5				$=\!5$	$=\!5$	=5	=5	$=\!5$
4A]	4c]	4f#]	4dd				V7c	4A]	4c]	4f#]	4dd
2r	2r	2r	4r					2r	2r	2r	4r
	÷		4d					(in)			4d

Source: Nápoles (2017)

Harmonic	: Analysis
Harmonic Root	Key estimation
	ey (1997)

Temperley and Sleator (2001)

- Find/Encode the 24 scores into a symbolic music representation
- Annotate the harmonic analysis of all of them using a consistent and "parsable" nomenclature
- Present the output of a known automatic harmonic analysis algorithm using the same nomenclature as the manual annotations
- Compare the automatic annotations to our dataset of manual annotations

1. Functional harmonic analysis involves not only the roman numeral labels, but the key changes and their exact location

Example:

Development section of the sonata form with trivial chords but ambiguous key

- 1. Functional harmonic analysis involves not only the roman numeral labels, but the key changes and their exact location
- **harm syntax provides an infinite possibility of roman numeral labels, and comparing them is not trivial

Example:

III+c/i[V+b]

Re-spelling an augmented dominant as an augmented third degree in the minor mode

- 1. Functional harmonic analysis involves not only the roman numeral labels, but the key changes and their exact location
- **harm syntax provides an infinite amount of labels, and comparing them is not trivial
- 3. No baseline evaluation of functional harmonic analysis

Comparison (plan B)

Resolution of harmonic roots

C major: I == G major: IV

C major: V/V == G major: V

C major: V7/vi == D minor: V7/v

Manual	analysis	Automati	c analysis
**harm	**root	**harm	**root
			•
<u>.</u>			
× .		×	
		÷	8 7
=1	=1	=1	=1
i	g		•
2	1		
iio	a	iv	f
			<i></i>
ib	g		
=2	=2	=2	=2
iv	с	ib	с
		V7c	g
ib	g		

Table 5: Sample evaluation file.

Source: Nápoles (2017)

40

Time unit	Root 1	Root 2	Match
1			Yes
2		100 S	Yes
3			Yes
4	•		Yes
5	•		Yes
6			Yes
7	g	880	No
8	g		No
9	a	f	No
10	a	f	No
11	g	f	No
12	g	f	No
13	с	с	Yes
14	с	С	Yes
15	с	g	No
16	с	g	No
17	g	g	No
18	g	g	No

Table 10: Matching the root spines from an evaluation file

Movement	Matching time units	Total time units	Score
Op.20 No.1			
Ι	2261	3489	64,80%
II	221	805	27,45%
III	1319	1730	76,24%
IV	332	1289	25,76%
Op.20 No.2			
Ι	1254	5137	24,41%
II	1119	2017	55,48%
III	713	1033	69,02%
IV	309	1945	15,89%
Op.20 No.3			
Ι	2426	4322	56,13%
II	121	535	22,62%
III	3386	4069	83,21%
IV	535	1681	31,83%
Op.20 No.4			
Ι	2464	3663	67,27%
II	1992	3922	50,79%
III	65	223	29,15%
IV	1651	6289	26,25%
Op.20 No.5			
Ι	4950	7729	64,04%
II	793	1201	66,03%
III	2617	3061	85,49%
IV	798	1473	54,18%
Op.20 No.6			
I	1808	3985	45,37%
II	6217	7585	81,96%
III	405	505	80,20%
IV	1361	3041	44,76%

Source: Nápoles (2017)

Towards a Better Comparison

- Having an easier way to work with **harm syntax labels
 - <u>https://github.com/napulen/harmparser</u>

Unfortunately, it was developed during the end of this research project and it was not used for the evaluation presented here

References

- Barthélemy, Jerome, and Alain Bonardi. 2001. "Figured Bass and Tonality Recognition." In *ISMIR*. Citeseer.
- Illescas, Plácido R, David Rizo, and José Manuel Iñesta Quereda. 2007. "Harmonic, Melodic, and Functional Automatic Analysis." In ICMC. Citeseer.
- Nápoles López, Néstor. 2017. "Automatic harmonic analysis of classical string quartets from symbolic score." Master's thesis, Universitat Pompeu Fabra. doi:10.5281/zenodo.1095617. https://doi.org/10.5281/zenodo. 1095617.
- Pardo, Brian, and William P Birmingham. 2001. "The chordal analysis of tonal music." The University of Michigan, Department of Electrical Engineering and Computer Science Technical Report CSE-TR-439-01.
- Radicioni, Daniele P, and Roberto Esposito. 2010. "BREVE: An HMPerceptron-Based Chord Recognition System." In Advances in Music Information Retrieval, 143–164. Springer.
- Raphael, Christopher, and Josh Stoddard. 2003. "Harmonic analysis with probabilistic graphical models."
- Scholz, Ricardo, and Geber Ramalho. 2008. "COCHONUT: Recognizing Complex Chords from MIDI Guitar Sequences." In ISMIR, 27–32.

Thank you