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Introduction

Digital encoding of music enables a wide range of applications

Many written music remains only in physical format

Typesetting music represents a costly endeavor

Optical Music Recognition can be seen as the key to increasing the number of
available encoded music sources



Introduction

e Optical Music Recognition (OMR) is the field that studies how to make
computers capable of reading music
e Difficulties of OMR

o Music notation is complex

o Music manuscripts are highly heterogeneous
m Document conditions
m Sheet organization
m Notational systems
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Introduction

e The “universal OMR” may be out of reach

e General OMR workflow
Document processing
Music symbol recognition
Notation assembly
Encoding

O O O O



Framework

Optical Music Recognition workflow
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Framework

Optical Music Recognition workflow

e Sequential stages: errors are propagated
e Each stage should be checked before going on

e It is necessary to involve the user in the process
o Human-aided Optical Music Recognition workflow



Introduction

Human-aided Optical Music Recognition workflow

e Involve the user in the process to guide the computer
e Useris necessary: take the most out of it
e The OMR stages should not be fixed, but allow adaptation



Framework

Human-aided Optical Music Recognition workflow
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Framework

Human-aided Optical Music Recognition workflow
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Framework

Document processing

e Separate the content of the document into its constituent layers
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Framework

Document processing
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Human-aided music document analysis

Core processes

e Machine Analysis
e Human Teaching
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Human-aided document analysis

Machine Analysis

e Avoid hand-crafted procedures that exploit specific characteristics

e \We need models that learn to do the task

e This naturally leads to machine learning techniques
o  Ground-truth data is necessary for the models to be trained
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Human-aided document analysis

Machine Analysis

e Our workflow requires detection at pixel level

e Pixelwise Classification Method (CM) with Convolutional Neural Networks
o The surrounding region of each pixel contains enough discriminative information
o The network is trained from a large number of examples for each category
o Itlearns the regularities in these examples and creates a model out of the data
o Once a model is trained, it is used to classify new examples
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Human-aided document analysis

Machine Analysis: Convolutional Neural Networks

e Convolutional Neural Networks represent the state of the art in computer
vision and image processing tasks

e Hierarchy of filters (convolutions) that process an image to predict a label

e Filters are not fixed but learned through a training process

e Feature extraction is not necessary
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Human-aided document analysis

Machine Analysis

e Pixelwise Classification Method (CM) with Convolutional Neural Networks
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Human-aided document analysis

Machine Analysis

e Pixelwise Classification Method (CM) with Convolutional Neural Networks
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Human-aided document analysis

Machine Analysis

e Pixelwise Classification Method (CM) with Convolutional Neural Networks
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Human-aided document analysis

Machine Analysis

e Pixelwise Classification Method (CM) with Convolutional Neural Networks
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Human-aided document analysis

Machine Analysis

e Pixelwise CM
o Advantages
m Learning-driven model
m  Good performance
m Learning from limited ground-truth data
o Disadvantages
m High temporal cost
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Human-aided document analysis

Machine Analysis

e The temporal cost of the pixelwise CM represents a troublesome bottleneck

e Patchwise CM with Auto-Encoders
o Replace the CNN classifier by class-wise (Convolutional) Auto-Encoders
o Filters learn an image-to-image prediction
o Process a complete sub-image (patch) in a single step
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e Auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e Auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e Denoising auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e Denoising auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e Selectional auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

Selectional auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

Selectional auto-encoders
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e C(lass-wise selectional auto-encoders for document processing
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e C(lass-wise selectional auto-encoders for document processing
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Human-aided document analysis

Machine Analysis: Auto-Encoders

e Patchwise CM

O  Advantages

m Fast document processing

m Class-wise independent detection
o Disadvantages

m Demanding ground-truth data
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Human-aided document analysis

Machine Analysis

Accuracy
Pixelwise CM ~90 %

Patchwise CM ~92 %

Time per page
~ 6 hours

~ 1 minute
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Human-aided document analysis

Human Teaching

e Useris in charge of teaching what needs to be done
e In practice: manual separation of document layers to create ground-truth data
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Human-aided document analysis

Human Teaching

e User is in charge of teaching what needs to be done
e In practice: manual separation of document layers to create ground-truth data
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Human-aided document analysis

Human Teaching

e Models need manuscript-specific training
o Some cross-manuscript adaptation is possible but not reliable

e It is necessary to integrate the annotation tool into the workflow
e Development of Pixel.js
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Human-aided music document analysis

Overview
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Human-aided music document analysis

Overview
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Human-aided music document analysis

Specialization

e Model re-training is costly
o Training neural networks requires time
o Other (adaptive) models are less accurate and slower in classification
o Trade-off among adaptiveness, efficiency, and accuracy
o Experiments are to be carried out
e Straightforward solution: assume asynchronization
o User may do other duties while the machine is learning
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Conclusions

Summary

Universal OMR is not feasible in the short term
Generic workflow can be assumed
Human-aided OMR is appealing

Users provide guidance to the system wherever necessary

o Correct remaining errors
o Continuous teaching to improve future performance

40



Conclusions

Summary

e The document analysis stage is the first task to address in the OMR workflow

e New issues to take into account
o Learning-driven models
o Annotations tools
o Processing time

41



Conclusions

Discussion

e Towards general and adaptive OMR workflow
e Users do not need technical knowledge to provide guidance
e Lower performance bound than manuscript-specific OMR systems
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Conclusions

Discussion

e Environment for Machine Pedagogy: learning how to teach the computer

e Relevance of the user

o Initial model selection
o ldentification of promising ground-truth data
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Conclusions

Future work

e Primary goal: to reduce human effort
o Domain adaptation techniques
o Improving accuracy of the models
o Make the workflow be as friendly as possible

44



Thank you!
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